Cycle-finite modules over artin algebras

نویسندگان

چکیده

We describe the representation theory of finitely generated indecomposable modules over artin algebras which do not lie on cycles involving homomorphisms from infinite Jacobson radical module category.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generic modules over artin algebras

Generic modules have been introduced by Crawley-Boevey in order to provide a better understanding of nite dimensional algebras of tame representation type. In fact he has shown that the generic modules correspond to the one-parameter families of indecomposable nite dimensional modules over a tame algebra 5]. The Second Brauer-Thrall Conjecture provides another reason to study generic modules be...

متن کامل

Constructing large modules over artin algebras

Let be an artin algebra and denote by mod(() the category of nitely generated-modules. Apart from those we are also interested in-modules which are not nitely generated. These are called large. Recall that the algebra is of innnite representation type provided that mod(() has innnitely many isomorphism classes of indecomposable objects. A theorem of Auslander asserts that there exists a large i...

متن کامل

On the Finsler modules over H-algebras

In this paper, applying the concept of generalized A-valued norm on a right $H^*$-module and also the notion of ϕ-homomorphism of Finsler modules over $C^*$-algebras we first improve the definition of the Finsler module over $H^*$-algebra and then define ϕ-morphism of Finsler modules over $H^*$-algebras. Finally we present some results concerning these new ones.

متن کامل

Hilbert modules over pro-C*-algebras

In this paper, we generalize some results from Hilbert C*-modules to pro-C*-algebra case. We also give a new proof of the known result that l2(A) is aHilbert module over a pro-C*-algebra A.

متن کامل

On Cm-finite Gorenstein Artin Algebras

An artin algebra A is said to be CM-finite if there are only finitely many, up to isomorphisms, indecomposable finitely-generated Gorenstein-projective A-modules. We prove that for a Gorenstein artin algebra, it is CM-finite if and only if every its Gorenstein-projective module is a direct sum of finitely-generated Gorenstein-projective modules.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Contemporary mathematics

سال: 2021

ISSN: ['2705-1056', '2705-1064']

DOI: https://doi.org/10.1090/conm/761/15316